metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tsun-Ren Chen

Department of Electrical Engineering, Yung-Ta Institute of Technology, Ping-Tung, 90902 Taiwan, Republic of China

Correspondence e-mail: trchen@mail.ytit.edu.tw

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.007 Å R factor = 0.050 wR factor = 0.126 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[2,6-Bis(1*H*-benzimidazol-2-yl)pyridine]dichlorozinc(II) *N*,*N*-dimethylformamide solvate

In the title compound, $[ZnCl_2(C_{19}H_{13}N_5)]\cdot C_3H_7NO$, the Zn^{II} cation shows distorted trigonal-bipyramidal coordination by three N atoms and two Cl atoms, the latter occupying equatorial sites. $N-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds help to stabilize the crystal packing.

Comment

Imidazole is a ligand that plays an important role in biological systems, since the imidazole moiety of the histidine residues in a large number of metalloproteins constitutes all or some of the binding sites of various transition metal ions (Colacio *et al.*, 2000). Imidazole can force the resultant metal complexes into special geometries (Balamurugan *et al.*, 2001) and the change in molecular structure may influence molecular properties, such as thermal stability (Yu *et al.*, 2003) and photoluminescence (Ho *et al.*, 1999). Therefore, we have prepared the title compound, (I), to evaluate the role of the N coordination in this ligand to Zn.

(I)

Fig. 1 and Table 1 show that the geometry of (I) about the Zn^{II} ion is distorted trigonal-bipyramidal; the N1-Zn-N4 bond angle [144.38 (14)°] is much larger than the N1-Zn-N3 [72.94 (13)°] and N3-Zn-N4 [73.57 (14)°] angles. The entire 2,6-bis(benzimidazol-2-yl)pyridine ligand is approximately planar; the dihedral angles between the benzimidazole moieties and the pyridine ring are 4.3 (2) and 4.8 (3)°.

The crystal structure of (I) is stabilized by hydrogen bonds involving the imidazole N-H groups and a possible C- $H \cdots O$ interaction (Table 2). The first type of hydrogen bond, N- $H \cdots Cl$, connects two molecules of (I) to construct a stacking structure, with interplanar distances in the range 3.4-3.6 Å, indicating a π - π stacking interaction between adjacent molecules (Ho *et al.*, 1998). The second type of hydrogen bond, N- $H \cdots O$, exists between the imidazole N atoms of the metal complex and the O atom of the solvent (*N*,*N*-dimethylformamide, DMF). Fig. 2 shows a packing diagram for (I).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 August 2004 Accepted 24 September 2004 Online 30 September 2004

Figure 1

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

Light-brown crystals of (I) were obtained from the diffusion of a zinc chloride solution in *N*,*N*-dimethylformamide into an ethanolic solution of 2,6-bis(benzimidazol-2-yl)pyridine, prepared by heating a mixture of 1,2-phenylenediamine and pyridine-2,6-dicarboxylic acid in polyphosphoric acid (Rüttimann *et al.*, 1992).

Crystal data

$[ZnCl_2(C_{19}H_{13}N_5)]\cdot C_3H_7NO$	$D_x = 1.554 \text{ Mg m}^{-3}$
$M_r = 520.71$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 28
a = 14.594 (3) Å	reflections
b = 7.889(2) Å	$\theta = 5.0-12.5^{\circ}$
c = 19.811 (4) Å	$\mu = 1.37 \text{ mm}^{-1}$
$\beta = 102.640 \ (8)^{\circ}$	T = 295 (2) K
$V = 2225.6 (9) \text{ Å}^3$	Rod, light brown
Z = 4	$0.80 \times 0.20 \times 0.20$ mm

Data collection

Bruker P4 diffractometer ω scans Absorption correction: multi-scan (*XEMP* in *XSCANS*; Siemens, 1996) $T_{min} = 0.723, T_{max} = 0.760$ 5087 measured reflections 3910 independent reflections 2705 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.126$ S = 1.053910 reflections 341 parameters H atoms treated by a mixture of independent and constrained refinement $\begin{aligned} R_{\rm int} &= 0.039\\ \theta_{\rm max} &= 25.0^\circ\\ h &= -1 \rightarrow 17\\ k &= -1 \rightarrow 9\\ l &= -23 \rightarrow 23\\ 3 \ {\rm standard\ reflections}\\ {\rm every\ } 97 \ {\rm reflections}\\ {\rm intensity\ decay:\ none} \end{aligned}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0475P)^2 \\ &+ 3.1157P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.51 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.73 \text{ e } \text{\AA}^{-3} \end{split}$$

A fragment of the molecular packing of (I), showing how hydrogen bonds (dashed lines) and π - π stacking cooperate to generate an extended structure.

Table 1

Selected geometric parameters (Å, °).

Zn-N1	2.179 (4)	Zn-Cl1	2.2571 (13)
Zn-N4	2.187 (4)	Zn-Cl2	2.2933 (16)
Zn-N2	2.201 (4)		
N1-Zn-N4	73.57 (14)	N2-Zn-Cl1	97.85 (10)
N1-Zn-N2	72.94 (13)	N1-Zn-Cl2	106.19 (11)
N4-Zn-N2	144.38 (14)	N4-Zn-Cl2	99.29 (11)
N1-Zn-Cl1	139.64 (11)	N2-Zn-Cl2	101.33 (11)
N4-Zn-Cl1	99.76 (11)	Cl1-Zn-Cl2	114.16 (6)

Table 2	
Hydrogen-bonding geometry	(Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3 - H3N \cdots Cl2^{i}$ $N5 - H5N \cdots O^{ii}$ $C20 - H20A \cdots O$	0.77 (4) 0.98 (6) 0.96	2.41 (4) 1.74 (6) 2.37	3.142 (5) 2.706 (6) 2.783 (9)	163 (5) 167 (5) 105

Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C–H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C–C bond. The H atom on DMF atom C22 was also placed in an idealized position and treated as riding, with C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The positions of the amine H atoms were refined freely, along with their isotropic displacement parameters. The positions of all other H atoms were refined freely [C–H = 0.78 (4)–0.98 (4) Å] with the constraint $U_{iso}(H) = 1.2U_{eq}(C)$ applied.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author thanks the National Science Council of the Republic of China for financial support.

References

- Balamurugan, R., Palaniandavar, M. & Gopalan, R. S. (2001). *Inorg. Chem.* 40, 2246–2255.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Colacio, E., Ghazi, M., Kivekäs, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). *Inorg. Chem.* **39**, 2770–2776.
- Ho, K.-Y., Yu, W.-Y., Cheung, K.-K. & Che, C.-M. (1998). Chem. Commun. pp. 2101–2102.
- Ho, K.-Y., Yu, W.-Y., Cheung, K.-K. & Che, C.-M. (1999). J. Chem. Soc. Dalton Trans. pp. 1581–1586.
- Rüttimann, S., Moreau, C. M., Williams, A. F., Bernardinelli, G. & Addison, A. W. (1992). *Polyhedron*, **11**, 635–646.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yu, G., Yin, S., Liu, Y., Shuai, Z. & Zhu, D. (2003). J. Am. Chem. Soc. 125, 14816–14842.